
Upgrading NPM packages
and how to ensure it’s not so painful next time.

Livvy Mackintosh

Storytime

You inherit a project from another team and notice a lot of packages are
very out of date. You attempt to upgrade the packages but all of your tests
go red; and after battling for several hours you decide to throw in the
towel and write a tech debt ticket.

Eventually, the knowledge of the hundreds of security vulnerabilities is
on your mind. You decide to fix the packages even though it’s not a
priority in your sprint. Left exhausted and tired, you wonder how you can
prevent such a situation in the future.

Things you should ask yourself
before you $ yarn add foo

Do you really need that package?

Seriously. Have you actually read
the source code?

If it’s a single module containing 20 lines,
consider re-implementing it in your project.

Think like a minimalist.

That package probably does more than you
need. Software is already bloated, please

don’t make the problem worse. If you can
achieve your goal with less code, do it. Your

codebase will have a longer lifespan.

https://suckless.org/philosophy/

https://suckless.org/philosophy/

Storytime 2.0

Kevin decided he was smart and has created a
document converter that uses 5 libraries and
converts Markdown to XML and then to PDF.

After some serious consideration,
you decide you need that

package.

What do you need to be telling yourself now?

Even if there is no security holes now, you can
bet there will be soon.

If you’re using packages that aren’t
backed by a company or paid person,

keep an eye on GitHub.

99.9%* of projects will be abandoned. Anticipate
this in advance and have a plan.

If you see this, start getting worried and
contact the maintainer. If it’s a small library,

consider merging it into your codebase or
offering to maintain it.

Consider creating an internal API you
can use for external dependencies.

(Changing calls to a library in 100 places isn’t fun.)

Painful Less Painful

MO
DU
LE

MO
DU
LE

MO
DU
LE

...x20 more

LIB

MO
DU
LE

MO
DU
LE

MO
DU
LE

...x20 more

LIBAPI

Take advantage of loose dependencies.

(But still pin your dependencies separately).
This way, you can leverage the power of your package

manager to find the versions of a package that are
compatible with each other.

“That’s all well and good Livvy but I’m
already in the quagmire. How do I get

out?”

It’s not an exact science.

1. Stay calm
2. Drink some coffee and get in the

zone
3. Be like a watchmaker

1. Pick one dependency
2. Bump the version a bit
3. Read the changelog
4. Fix breaking API changes
5. Keep running tests and repeat 3+4

until they pass
6. Celebrate lightly
7. Rinse and repeat

Remember: It’s much easier to not add
the dependency in the first place. Be
kind to yourself and your colleagues.

JUST SAY NO :)

Fin.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

